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only up to the n=3 He + level. We used an n~z law in 
extrapolating to ^ = 4 . Also shown in Fig. 5 are our 
results in transforming the line cross sections into ^ = 4 
cross sections. 

I t would seem that fair agreement is being reached 
at the higher energies where the Born approximation 
is expected to hold. Both estimates are rough, however. 

INTRODUCTION 

R ECENTLY, many approximate wave functions of 
- the ground state of lithium have been reported.1-9 

For all of these, the Fermi10 contact term in hyperfine 
structure has also been calculated. The calculation of 
the contact term is of interest since it has been predicted 
by Pratt11 that one should expect a contribution to the 
contact term from the core, Is electrons in an open-shell 
configuration due to the spin polarization of the core, in 
this case by the outer, unpaired 2s electron. This effect 
is called the core polarization effect and has been 
applied12 to cases for which the polarizing electron is not 
an s electron. The hyperfine fields thereby calculated 
are at least of the same order as those observed experi
mentally and have not been predicted by any other 
theory. 

1 J. B. Martin and A. W. Weiss, J. Chem. Phys. 39,1618 (1963). 
2 R. P. Hurst, J. D. Gray, G. H. Brigman, and F. A. Matsen, 

Mol. Phys. 1, 189 (1958). Hypernne structure calculations are 
reported in Ref. 1. 

3 Lester M. Sachs, Phys. Rev. 117, 1504 (1960). 
4 This result was reported as a private communication from J. N. 

Silverman in Ref. 1. 
5 K. F. Berggren and R. F. Wood, Phys. Rev. 130, 198 (1963). 
6 J. Kerwin and E. A. Burke, J. Chem. Phys. 36, 2987 (1962). 
7 Z. W. Ritter, R. Pauncz, and K. Appel, J. Chem. Phys. 35, 571 

(1961). Hyperfine structure calculations are reported in Ref. 1. 
8 E. A. Burke, Phys. Rev. 130, 1871 (1963). 
9 R. K. Nesbet, Phys. Rev. 118, 681 (1960). 
10 E. Fermi, Z. Physik, 60, 320 (1930). 
11 G. W. Pratt, Jr., Phys. Rev. 102, 1303 (1956). 
12 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961). 

VI. EXCITATION OF THE 4 lD -> 2 *P (CU922 A) LINE 

This line is pressure-dependent with the apparent 
cross section increasing with pressure. Population 
mechanisms include collisional transfer, n1P-^nlF 
with subsequent n XF (n>4) cascade to 4 XD, and also 
4 1 P —> 4 lD collisional transfer. Figure 6 is an excitation 
curve to this line at 4 /x pressure. 

The lithium atom in its ground state represents the 
I simplest test of the validity of the core polarization 
9 hypothesis. One expects for hyperfine structure a large 

contribution from the 2s valence orbitals and a smaller 
£ contribution from the core orbitals provided that the 
i latter orbitals are represented by an open-shell con

figuration.11 Recent hyperfine structure calculations,1-9 

i however, show several inconsistencies. In the first place, 
' there seems to be little correlation between the "good-
t ness" (as determined by calculated total energy) of a 

wave function and the "goodness" (as* determined by 
t deviation of experimental and calculated values) of the 
i contact term. Of greater significance are the results 
- using nearly exact wave functions which show that the 

value of the contact term with and without open-shell 
orbitals changes only slightly. This result has been 
interpreted5 as casting serious doubt on the physically 

). simple and highly useful concept of core polarization. 
h I t is the purpose of this paper to investigate these 
e inconsistencies. For the energy versus contact term 

correlation it will be shown that the energy value 
*• (known to be a poor criterion of "goodness") must be 
) considered in conjunction with the structure of the 

wave function before any comparisons with hyperfine 
/• structure calculations can be made. By this analysis one 

is able to show a correlation between the ground state 
energy and the contact term. Furthermore, one may 
then predict the best form of a wave function for more 

.). complicated physical situations. On the question of core 
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The core polarization effect in hyperfine structure is discussed by a semiempirical evaluation of 16 recently 
calculated values of the Fermi contact term for the ground state of lithium. The analysis proceeds by an in
vestigation of the manner in which the various wave functions approximate eigenfunctions of S2, in conjunc
tion with an examination of the one-electron orbitals employed. The concept of core polarization by non-5 
electrons is shown to be valid, while if the polarizing electron is an s electron, no definite conclusion concern
ing core polarization can be made. Finally, it is proposed that for all cases of a single polarizing electron, the 
following many-electron, approximate unrestricted Hartree-Fock wave function may be used: 

<b = Ap{Bi{XhUn{i)Ki)aUn\i)Ui)$yjN 

where N, L are the quantum numbers of the polarizing electron and Bi= — J52 if L — 0. Two tests of the 
validity of this wave-function approximation are proposed. 
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polarization it will be shown that (1) one cannot un
equivocally state that the core contribution is negligible 
when the polarizing electron is in an s state and (2) if 
the polarizing electron is not in an s state then one will 
obtain a large core contribution (spin-polarized core) to 
the contact term in hyperfine structure. 

FORMULATION 

Fermi10 showed that for s electrons the Hamiltonian 
of the hyperfine energy, the so-called contact term, is 
given by 

ff=.(&r/3W£(2/+l)//]((/>/4ir), (1) 
where 

N 28(n) 

and f<? 28(r)dr=L From Eq. (2) it follows that the 
quantity ( / ) /4TT=6(0) , the electron spin density at the 
nucleus. 

For purposes of comparison all of the calculations of 
(/) may be considered in the manner which the wave 
functions used approximate eigenfunctions of S2. Thus 
a general description can begin with the exact eigen
functions and then consider in turn the various approxi
mations. The first discussion of this type was given by 
Pratt11 in which the value of {/) was given by13 

< / > = 7 \ ^ i W ( 0 ) 
+A2*£2U1z(0)+2Ui,st (0)- -2tf2s

2(0)] 
+ 2 ^ 2 [ ^ ( 0 ) - t f l s

2 ( 0 ) ] } 
+terms due to nonorthogonality. (3) 

It is assumed here for convenience that all quantities 
are real. The normalization and other constants are 
included in N; 4 i and A2 are variational parameters 
associated with the two linearly independent spin 
functions which are eigenfunctions of S2; the U's are 
the one-electron orbitals (here evaluated at the nucleus, 
r=0). A glance at Eq. (3) clearly shows core asymmetry 
in the A \A 2 term. One might suspect that core polariza

tion effects arise from this term. All calculations, how
ever, have shown that the A2 parameter is negligibly 
small in energy calculations and has often been neglected 
in calculating (/). As a matter of fact the values of (/) 
closest to experimental values have ignored A2. Thus a 
more thorough investigation must include those terms 
due to the nonorthogonality of the IPs. 

A wave function which is an eigenfunction of S2 for 
the doublet ground state of a three-electron atom is14 

6fy=Ap{A1[UlsaUVsf3U2sa-UlspUVsaU2sa'] 
+A£2UlsaUi>saU2sl3-UlsaU1>s/3U2sa 

-Ulsm>saU2sal}. (4) 

In Eq. (4) A p is the antisymmetrizing operator, A i and 
A 2 have the same meaning as in Eq. (3), and the elec
trons 1, 2, and 3 are represented, in that order, in the 
product of one-electron functions. The antisymmetrizing 
operator can, of course, be replaced by a determinant 
wave function. For the present case the wave function 
can be considered as the linear combination of three 
determinants. In order to investigate the nonorthogonal 
terms in Eq. (3) we wish to orthogonalize where possible. 
Thus in the determinant derived from A VU u<xU v sfiU 2sa 
we may only orthogonalize Uu and U2s, etc. Let us 
construct U2s,n and U2s>Vs which are U2s orbitals 
orthogonal to Uu and UVs orbitals, respectively. Hence, 

and 
U2S)U— U2s"S2s,lsUls 

U2s,Vs= U2s~S2s,VsUl's , 

(5) 

(6) 

where S2s,is and S2s,i>s are overlap integrals between the 
subscripted orbitals. It is not necessary (nor desirable 
on account of symmetry) to orthogonalize the core 
orbitals with each other. 

The formula for (/) using the wave function of Eq. (4) 
may be written, similar to Eq. (3), as products of Ai2, 
AiA2, and A2

2. Since, as already noted, A2 plays an 
insignificant role in the energy calculation and since it 
has also been observed6 that the A2

2 contribution is 
negligible in computing {/), we will neglect the A2

2 

contributions. Thus, 

(f)^TAL
2tUl8

2(0)(Svs,2s
2-Sls,2s

2)+ 
~ £ l M ' s ^ l ' s , 2 s 2 — - 5 \ s 4 ' s 5 l s , 2 s

2 + 5 l s , 2 s ^ 

— 2Uis(0)U2S)i>s(0)SiSti>s(S2s,i>s-- Sis,i>sS2s,is) — 2Ui>s(0)U2s,is(0)SiSfi>s(S2s,is—SiSti>sS2s,rs)~] 
-\-^AxA£- Uu2(0)(2-S2s,l8

2+S2 -2Sis,i>sS2s,i's>S2s,w-\~Ui's2(0)(2—S2s,i's 
+Su,ls

2-2Su,l'sS2s,VsSu,ls)-Uu,U2(0)+U2s,Vs2(0)+2Uls(0)U2s,u(0)SU,vsS2s,Ve 

-2Uvs(0)U2s,is(0)S2s,i's-2Uvs(0)U2s,rs(0)Su,vsS2s,iS+2Uu(0)Uis,vs(0)S2s,u']. (7) 

Equation (7) may be further simplified. Since A £5>A 2, 
let us drop those terms in A\A2 which are of order equal 
to or less than the lowest order terms in Ai2. Order here 

13 The notation Is, l's is used instead of the more usual Is, Is' 
since it is the principal quantum number that is slightly altered 
and not the orbital angular momentum quantum number. 

is determined by power of core-valence overlap integrals 
and these are quadratic, to lowest order, in the ^4i2 term. 
Hence 

{/)-47r^1
2J3+87r^iJ42C, (8) 

14 E. A. Burke and J. F. Mulligan, J. Chem. Phys. 28, 995 
(1958). 
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TABLE I. Comparison of energy and hyperfine splitting calculations for lithium. 

A623 

Ref. 

1 
2 

2 
3 
3 

1 
1 
4 

5 
6 

7 

3 

8 
9 
5 
5 

Wave functiona 

35-term configuration interaction 
Two-determinant, open-shell, Slater-

type orbitals 
Closed-shell, Slater-type orbitals 
Closed-shell, Hartree-Fock 
One-determinant, open-shell, Hartree-

Fock with (/) projected 
41-term configuration interaction 
45-term configuration interaction 
One-determinant open-shell, Slater-

type orbitals 
Closed shell, ?ij core 
Three-determinant, open-shell, Slater-

type orbitals 
Two-determinant open-shell, Slater-

type core orbitals with expanded 
valence-orbital 

One-determinant open-shell, Hartree-
Fock 

Closed-shell, r%j core, m core-valence 
Six-term configuration interaction 
Closed-shell, rij core, r# core-valence 
Two-determinant, open-shell, m core, 

Uj core-valence 
Experiment 

-£ (a .u . ) 

7.41792 
7.4436 

7.41792 
7.43273 
7.43275 

7.47622 
7.47710 
7.41795 

7.47476 
7.4437 

7.4450 

7.43275 

7.4779 
7.4319 
7.47630 
7.47631 

7.47805° 

</>(*f") 

3.989 
3.772 

2.093 
2.095 
2.337b 

2.580 
2.595 
3.233 

2.648 
3.038 

2.802 

2.825 

2.826 
2.872 
2.872 
2.883 

2.9062d 

Absolute percent 
difference of (/) 

from experiment 

37.2 
29.8 

27.9 
27.9 
19.6 

11.2 
10.7 
10.1 

8.9 
4.5 

3.6 

2.8 

2.8 
1.2 
1.2 
0.8 

0.0 

a An unrestricted Hartree-Fock wave function is denoted here as open-shell Hartree-Fock. This facilitates comparisons. 
b This value differs from that in the reference and has been privately communicated to the author by Lester M. Sachs. 
« Charles W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 127, 830 (1962). 
d P. Kusch and H. Taub, Phys. Rev. 75, 1477 (1949). 

where 

C~-2l7i.2(0)+2ffi/.2(0) 
+ 2^1.(0)J7a.(0)(25i. i2.+5i. irA.,i'.) 

-2J7 r .(0)^2 .(0)(252 . Ii ' .+51 . l l 'A. ti .) (9) 

and B may be obtained from Eq. (7). Equation (9) has 
been obtained by dropping the orthogonal orbitals 
which will not be needed in the discussion of the A1A2 
term. As an empirical check of the approximation (/) 
has been calculated using an open-shell wave function 
composed of Slater-type orbitals6 with the result that 
the approximate formula for {/) yields a value which 
deviates by less than 1% from the value obtained by 
using the complete formula. We may now proceed to 
discuss the various wave functions used in the computa
tion of (/). 

DISCUSSION 

Wave functions and associated energies along with 
the computed values of (/) and the absolute percentage 
deviation of the computed values of (/) are listed in 
Table I. Table II classifies the various wave functions 
in terms of the number of determinants, core configura
tion, and type of 2s orbital employed. 

Three-Determinant Functions 

One might expect that a three-determinant function for 
which 4>2s(0) is not zero would be closer to the experi
mental value than the three-determinant function for 

which <£2s(0) = 0. By reference to the tables we see that: 
this is not the case. However, the former wave function 
is a 45-term configuration interaction of which only four 
terms are of the three-determinant type. It must be 
remembered, both here and in what follows, that in 
considering (/) and in analyzing the various contribu
tions to (/) we are actually considering the matrix 
elements of (/), i.e., (/)#-. Thus (/) = 2#c*cy{/)# and the 
c's are the eigenvectors of the wave function. Apparently 
there is insufficient mixing of three-determinant con
figurations in the 45-term configuration-interaction 
wave function1 to compensate for the inadequacies 

TABLE II . Composition of wave functions employed in 
hyperfine splitting calculations for lithium. 

Configuration 
Deter

minants 

3 
3 
2 
2 
1 
1 
1 
1 

Core 
configuration 

open 
open 
open 
open 
open 
open 
closed 
closed 

<t>2s(0)* 

zero 
nonzero 
zero 
nonzero 
zero 
nonzero 
zero 
nonzero 

References 

6 
1 

1,2 
1, 7, 5 

4 
3b 

3 
3, 5, 8, 9, 5 

a A wave function is classified here as a nonzero $25 (0) type if any matrix 
element of </) is of this type. 

b Although the projected value of (/) may be considered as a two-
determinant representation, it is simpler to compare it to single-deter
minant results. 
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(which will be discussed) inherent in the one- and two-
determinant approximations. 

Two-Determinant Functions 

By reference to Table II we note that the poorest 
values and the best value of (/) have been obtained with 
two-determinant approximations. The 35-term con
figuration-interaction function of Martin and Weiss1 is 
part of the 45-term function discussed earlier. It is 
apparently quite important to include nonzero $2S(0) 
terms, not included in the 35-term function, in two-
determinant functions. This surmise is further sub
stantiated by the 41-term function by the same authors 
yielding a significant improvement in (/} by the 
inclusion of nonzero 02s (0) terms. It is also in agreement 
with the results of Hurst, et al2 who used Slater-type 
orbitals for which $2s(0) = 0. Furthermore, it will be 
noted that both the 35-term configuration-interaction 
function1 and the Slater-type-orbitals2 function yield 
values of (f) greater than the experiment. As a matter 
of fact, all open-shell calculations of {/) for which 
02s (0) = 0 yield values greater than experimental values 
and this fact will prove to be quite significant in dis
cussions of core polarization. 

An interesting comparison exists between the results 
of Hurst et al.,2 and Kerwin and Burke.6 Both wave 
functions are identical in every respect except that the 
latter is three-determinant, i.e., uses Ai and A2 varia
tional parameters of Eq. (4). In this case then it is 
certainly important to keep the A2 parameter. The 
difficulty is apparently surmounted by the wave func
tion of Ritter et al.7 This wave function differs from the 
former two only in the valence-orbital representation 
which is nonzero at the nucleus. The apparent effect is 
to reduce the significance of the A\A2 term in (/). This 
can be seen from Eq. (9) if we regard the four terms 
there as Is, 1's, ls-2s, and lfs-2s contributions. Note 
that in going from a. zero to a nonzero 02s(O) the Is con
tribution increases (if we include ls-2s in the Is contri
bution) while the difference in Is and l's contributions 
become smaller and from the results of Ritter et al? 
becomes very small. The two-determinant function of 
Berggren and Wood5 will be discussed in conjunction 
with single-determinant functions. 

ONE-DETERMINANT FUNCTIONS 

Before comparing the single-determinant results in 
detail we should examine the analytic form of (/) in a 
single-determinant representation. Thus 

T ^is,2s
2(0)-| 

</> = 4TT Uu2(0)-Urs2(0)+ • (10) 
L l -S i s

2 , 2 J 

It is interesting and informative to apply this to simple 

Slater-type orbitals with 

Uls(r)=(a*/Tryi2e-ar, 

UVs(r)= (b*/Tyt2e-br, and U2s(r) = {c^/Z^he-^. 

Let us assume, unless disproven, that a^b so that 
a=d+A and b=d—A with A<3C1. With this assumption 
the third term in the square bracket of Eq. (10) should 
remain practically unaltered in going from a closed-shell 
to an open-shell representation and thus the first two 
terms represent the core contribution, (/)COre. Hence, 
using the Slater-type orbitals we find 

< / ) c o r e - 4 [ ( J + A ) 3 - (d~ A ) 3 > 2 4 J 2 A . (11 ) 

Let us allow the best possible value of (/}COre, i.e., let it 
be the difference between the experimental value (see 
Table I) and the value calculated with closed-shell 
Slater-type orbitals.2 One finds A~0.0005 which satisfies 
the condition A<<C1. It is well known15 that the energy 
value varies in the fifth decimal place with a variation of 
A in the fourth decimal place so that this value of A gives 
an energy which is practically unchanged, but a value 
of (/) equal to the experimental value! One cannot 
argue that this value of A will greatly affect the con
tribution of the 2s electron since the third term in the 
square bracket of Eq. (10) is virtually unaffected and, 
by the converse of the conclusion drawn by James and 
Coolidge,16 one does not expect a great effect on the 
valence orbitals representation due to an improvement 
of the core representation. This effect is not inconsistent 
with the closed-2 and open-shell4 Slater-orbitals results 
for which the energies are —7.41792 and —7.41795, 
respectively, with associated values of (/) of 2.093 and 
3.233. The latter value of {/) deviates from the experi
mental value since one cannot expect the variationally 
determined A to be the same as that required for (/). 
Similarly the closed- and open-shell Hartree-Fock 
results3 yield respective energy values of —7.43273 and 
-7.43275 with respective </) values of 2.095 and 2.825 
(as compared to the experimental value of 2.906). 

Therefore, the defect in single-determinant, open-shell 
configurations is that the shells are hardly open at all. 
Thus errors which occur in lithium calculations can be 
expected to multiply many times over in hfs calculations 
for atoms involving many more electrons. Although 
wave-function parameters could be properly adjusted to 
account for hfs they would probably not be useful for 
the description of other physical phenomena. An 
example would be the antiferromagnetic effect.17 This 
effect can supposedly be explained by an improved 
representation of the exchange-integral representation 
on account of the slight change in the core orbitals. 
On account of this it is also difficult to rationalize the 

15 E. A. Burke, Ph.D. thesis, Fordham University, 1959 
(unpublished). 

16 H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936). 
17 J. C. Slater, Phys. Rev. 81, 385 (1951). 



C O R E P O L A R I Z A T I O N E F F E C T I N h f s A625 

title "exchange polarization effect" associated with the 
UHF formulation. 

It has been shown3 and discussed18 that attempts to 
remedy the defects in the wave function with projection 
operators19 fails, and only serves to emphasize the 
inadequate representation afforded by single-deter
minant, open-shell configurations. As a further indica
tion of the relative ease of parameter adjustment 
required to give a value of (/) close to experiment is the 
six-term configuration-interaction wavefunction used by 
Nesbet.9 For despite the fact that closed-shell orbitals 
were used the 2s orbitals were predominantly of the non
zero (j>2s (0) type producing one of the best values of 
(/) calculated so far. 

The wavefunctions which have not yet been con
sidered are all of the James and Coolidge16 type involv
ing the explicit use of interelectronic, r#, coordinates. 
From Table I we see that the addition of core-valence 
terms to a correlated core for a single-determinant 
approximation5 produces a significant improvement in 
the calculation of hfs. As expected then, well-correlated 
wave functions are quite important in hyperfine struc
ture calculations.20 The / values calculated with the 
correlated core and core-valence, closed-shell functions 
of Burke8 and of Berggren and Wood5 are inconsistent 
with their energy values. This is not too surprising since 
the energy is known to be a rather crude measure of 
goodness. Also these wave functions, though similar, 
differ in some respects. That calculated by the present 
writer8 used noninteger exponents throughout and the 
secular equation was solvable to the tenth order only. 
To that order the (/) values are the same as those of 
Berggren and Wood.5 

Perhaps the most interesting comparison is that be
tween the two best values of Berggren and Wood. Both 
of these use interelectronic separation coordinates be
tween all orbitals but the former is a closed-shell (hence 
proper eigenfunction of S2) calculation while the latter 
is a two-determinant approximation to an open-shell 
calculation. From the previous discussion we saw that 
the calculations of Ritter et al.7 indicate that the A\A2 

term in Eq. (7) is negligible in a two determinant ap
proximation when the 2s orbital is nonvanishing at the 
nucleus. Hence here we need only regard the A i2 terms 
of Eq. (7) from which it will be observed that in going 
from an open- to a closed-shell representation only 
three terms do not cancel. These terms are 

U2s,lS
2(0)+U2S,Vs2(0) + 2U2s,ls(0)U2s,Vs(0)Sls,Vs2. 

In a closed-shell representation these terms combine 
into 4£/2s,is

2(0). It will be observed that the core 
orbital contributions enter in the same way, i.e., there 
is no Is, l's asymmetry here. On the assumption of only 
a slight effect on the valence orbital due to a splitting 

18 W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961). 
19 P. O. Lowdin, Phys. Rev. 97, 1509 (1955). 
20 G. G. Hall, Rept. Progr. Phys. 22, 1 (1959). 

of the core orbitals and since the three noncancelling 
terms represent core contribution symmetrically, these 
terms should practically equal the closed-shell contribu
tion. A calculation on the relatively simple wave func
tion of Kerwin and Burke6 substantiated the hypothesis 
in that case. Thus the remaining Ai2 terms of Eq. (7) 
must nearly cancel. Hence if there is to be any core 
polarization by the 2s electron the remaining terms must 
lessen the valence electrons contribution to (/). The 
2s electron contributes to (/) in the terms 

— 2Uis(0)U2s,l's(0)Sls,L's{S2s,l's~Sls,l>sS2s,ls) 

— 2 Uy s (0 ) U2s,1s (OjSls,1's ( p 2 s , I s ~ Sis,J/sS2s,l's) • 

In order to facilitate the investigation consider the 
following equalities: 

*S,i*li'8
==l"-$i, S2s,is—S—dz, and S2s,vs—£+52. 

Now 8i and 52 are at least of the same order so for 
simplicity let 5i= 52= 5. Let us ignore powers of 5 higher 
than unity and let us drop the orthogonal orbitals. Then 
all that remains is 

{4SWi.(0)E7V.(0)} 
-{28U2s(0)l(2+S)Uls(0)-(2-S)UVs(0)l}. 

Each of the curly brackets is positive since 5 < 1 , and 
with this wave function Uu(0) > Uvs(0). We are unable 
to say definitely that the difference in the curly brackets 
is negative and thus are unable to say whether an open-
shell representation reduces the contribution to (/) so 
that the core contribution is not negligibly small. If the 
latter statement were true of course we would be able 
to state that core polarization does indeed contribute 
to hfs. One might speculate, however, that since the 
second of the curly brackets is the only term of those 
added to an open-shell representation which contains 
02s (0) terms, there is some lowering of the valence-
orbitals contribution to (/} due to the minus sign in 
front of the curly bracket and therefore a core polariza
tion effect. 

In what has preceded we were unable to state whether 
or not the 2s electron (or for that matter any unpaired 
s electron) can polarize the core electrons. It is perhaps 
unnecessary, in any case, to know the precise mechanism 
when the valence electron is an s electron. It would be 
more meaningful to be able to state that core polariza
tion is produced by a non~s electron for here hyperfine 
fields are experimentally observed21 which cannot be 
attributed to the valence electron alone. Reconsider 
Eq. (7). Let the unpaired electron be in an n, I state with 
n^l and Z^O. The terms Uni,vs2(0)+Uni,is

2(0) 
+ Unitvs(0) Uni,u(0)Sutva should remain relatively un
changed in going from a closed- to an open-shell repre
sentation on account of the symmetric manner in which 
the core electrons contribute. The remaining terms of 
Eq. (7) will be the same for the general n, I case, except 

21 An excellent bibliography of experimental results may be 
found in Ref. 19. 
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that the term 2dUn,i(0)L(2+S)Uu(0)- (2-S)Uv.(0)l 
will no longer be included since Uni (0) = 0 for the n, I 
assumed here. Since the terms introduced in an open-
shell representation are apparently negligible for a 2s 
valence electron, then with the exclusion of the Un,i(0) 
term we might expect a measureable change in the value 
of (/) from those terms arising from an open-shell 
representation or a core polarization for a non-s unpaired 
electron. To further substantiate the hypothesis com
pare the wave functions of Ritter etal.,7 and Hurst et al.2 

The difference between the two is in the 2s representa
tion. The 2s orbital employed by Hurst et al. is zero at 
the nucleus and to that extent resembles a non-s 
electron. By reference to Table I we see that the calcu
lated value of {/) is quite different for these two func
tions which can be likened to core polarization by a 
non-s electron. Of renewed interest now is the compari
son of the wave functions employed by Kerwin and 
Burke6 with those of Hurst et al.2 When the polarizing 
electron is not an s electron, or equivalently, when the 
2s orbital vanishes at the nucleus, it is necessary to 
include the A ±A2 term of Eq. (7), for from Table I we 
see that (/) as calculated by Kerwin and Burke6 is 
much closer to the experimental value than that calcu
lated in Ref. 2. 

SUMMARY AND CONCLUSIONS 

In the calculation of hyperfine structure for the case 
for which the unpaired electron is an s electron, well-
correlated, closed-shell wave functions which contain 
many terms for which the valence electron's orbital is 
nonvanishing at the nucleus serve very well. Thus, 
configuration-interaction wave functions which contain 
many such closed-shell configurations for which 
02s (0) = 0 cannot be expected to yield significantly good 
values of {/). Similarly, restricted-Hartree-Fock (RHF) 
functions which do not contain very much correlation 
will also fail to yield a significantly good value of (/). 

Single-determinant open-shell representations are for
tuitously good for calculations of the Fermi contact term 
in hyperfine structure. Fortuitous because the "shells" 
are hardly "open" at all so that applications to other 
physical situations will be no better than closed-shell 
wave functions. Since it already is a task to calculate 
wave functions for many-electron atoms it would seem 
far preferable to have functions which are more generally 
useful. Furthermore it is predicted that errors inherent 
in a single-determinant approximation for three elec
trons will multiply many times over in passing to calcu
lations involving many electron atoms. 

A two-determinant, open-shell wave function for 
which 02s (0) is not zero gives a reasonably good result 
for hfs when the unpaired electron is in an s state and the 
calculation is significantly improved with well-correlated 
wave functions. However, if the unpaired electron is not 
in an s state, then the two-determinant approximation 
is no longer useful in the computation of the contact 
term. 

Thus it seems that an exact eigenfunction of S2, viz., 
a three-determinant wave function is required for hfs 
calculations. However, an examination of the approxi
mation of (/} in Eqs. (7), (8), and (9) shows that 
none of the terms of the determinant arising from 
ApUuctUi'saUzsP of Eq. (4) enters into (/) when the 2s 
orbital vanishes at the nucleus. Hence this determinant 
may be dropped when the unpaired electron is not an s 
electron. For a many-electron atom one could then write 
<l> = Ap{Bi[JJmi Un(i)l(i)<xUn'(i)l(i)P~]UjN-,lflL 

+ B2ZUN,L^TLi Un(i)l(i)PUn'(i)l(i)<x]} > (^) 

where there is a single unpaired electron with principal 
and orbital angular momentum quantum numbers of 
N and L. Note that all determinants which would 
allow identical spin for orbits which differ only in the 
n, n' quantum numbers are not included. This approxi
mation proved valid for lithium provided that all s 
orbitals had nonvanishing contributions at the nucleus. 

Equation (12) may be considered as a revised base 
for unrestricted Hartree-Fock (UHF) calculations since 
it is the Hartree-Fock method and particularly the 
analytic approximations22 to the method which are 
more generally useful. For the case of L=0 in Eq. (12) 
let Bi= —B2; otherwise there is no simple relation be
tween the two parameters. As a test of the hypothesis it 
is proposed that a UHF calculation, based on Eq. (12), 
of lithium be performed. I t is not expected that the 
value of {/) will improve greatly but that the energy 
will be significantly improved indicating, in general, a 
better representation of the system. Also it is proposed 
that improved (i.e., similar to functions of Ritter et al.7) 
Slater-type functions be used in conjunction with Eq. 
(12) on the ground state of the boron atom, with its p 
electron polarizing the core s electrons. This latter test 
will also enable us to ascertain the validity of the two-
determinant approximation of Eq. (12). 

22 C. A. Coulson, Proc. Cambridge Phil. Soc. 34, 204 (1938); 
C. C. J. Roothan, Rev. Mod. Phys. 23, 69 (1951); and R. K. 
Nesbet, Rev. Mod. Phys. (to be published). 


